数据库基础知识
为什么要使用数据库
答题思路一:内存、文件和数据库的比较
如果将数据保存在内存中,虽然说存取速度快,但是会导致数据不能永久的保存。
如果将数据保存在文件中,可以解决数据永久保存的问题,但是却引发了新的问题:速度比内存操作慢,频繁的 IO 操作,而且查询数据不方便。
但是将数据保存在数据库中,完美的解决了以上所有问题:数据可以永久保存,通过使用 SQL 语句,使得查询方便效率高,并且管理数据方便。
所以要使用数据库。
答题思路二:使用数据库的好处
- 支持数据的独立性和有效访问
- 减少了应用开发时间
- 支持对数据完整性和安全性的控制
- 支持并发访问
- 支持对故障的恢复
数据库的发展阶段 ⭐
人工管理阶段>>文件系统阶段>>数据库系统阶段
文件系统与数据库系统之间的比较
- 数据库可以通过 DBMS 直接进行很多操作,而文件的话只提供了简单的操作。
- 用文件的话,要针对不同的文件结构编写不同的代码。
- 由于实际应用中并发同时访问导致数据访问不一致。【文件没有解决办法,需要在应用软件层解决,而 DBMS 中有】
- 故障处理【文件系统不具备这个能力,但DBMS会自动恢复】
- 安全和访问控制
什么是数据库系统
在计算机系统中引入数据库后的系统。它是由数据库、数据库用户、计算机软硬件、数据库管理员构成。
什么是数据库
数据库是长期存在计算机内、有组织的、可共享数据集合。
什么是数据库的约束
NULL/NOT NULL 约束、UNIQUE 约束、PRIMARY KEY 约束、FOREIGN KEY 约束、CHECK 约束
什么是数据库管理系统
用于用户与操作系统之间的一层数据管理软件
什么是数据模型
数据模型是一种标识实体类型及其实体间联系的模型。典型的数据模型有网状模型、层次模型和关系模型。
什么是规范化
从关系数据库的表中,除去冗余数据的过程称为规范化。包括:精简数据库的结构,从表中删除冗余的列,标识所有依赖于其它数据的数据
简述数据库的三级模式结构
- 内模式:也称存储模式。数据物理结构和存储方式的描述,是数据在数据库中的组织方式
- 模式:也称逻辑模式。是数据库中全体数据成员的逻辑结构和特征的描述
- 外模式:也称用户模式。是数据库用户能看见和使用的局部数据的逻辑结构和特征的描述


1、整数类型,包括TINYINT、SMALLINT、MEDIUMINT、INT、BIGINT,分别表示1字节、2字节、3字节、4字节、8字节整数。任何整数类型都可以加上UNSIGNED属性,表示数据是无符号的,即非负整数。
长度:整数类型可以被指定长度,例如:INT(11)表示长度为11的INT类型。长度在大多数场景是没有意义的,它不会限制值的合法范围,只会影响显示字符的个数,而且需要和UNSIGNED ZEROFILL属性配合使用才有意义。
例子,假定类型设定为INT(5),属性为UNSIGNED ZEROFILL,如果用户插入的数据为12的话,那么数据库实际存储数据为00012。2、实数类型,包括FLOAT、DOUBLE、DECIMAL。
DECIMAL可以用于存储比BIGINT还大的整型,能存储精确的小数。
而FLOAT和DOUBLE是有取值范围的,并支持使用标准的浮点进行近似计算。
计算时FLOAT和DOUBLE相比DECIMAL效率更高一些,DECIMAL你可以理解成是用字符串进行处理。3、字符串类型,包括VARCHAR、CHAR、TEXT、BLOB
VARCHAR用于存储可变长字符串,它比定长类型更节省空间。
VARCHAR使用额外1或2个字节存储字符串长度。列长度小于255字节时,使用1字节表示,否则使用2字节表示。
VARCHAR存储的内容超出设置的长度时,内容会被截断。
CHAR是定长的,根据定义的字符串长度分配足够的空间。
CHAR会根据需要使用空格进行填充方便比较。
CHAR适合存储很短的字符串,或者所有值都接近同一个长度。
CHAR存储的内容超出设置的长度时,内容同样会被截断。使用策略:
对于经常变更的数据来说,CHAR比VARCHAR更好,因为CHAR不容易产生碎片。
对于非常短的列,CHAR比VARCHAR在存储空间上更有效率。
使用时要注意只分配需要的空间,更长的列排序时会消耗更多内存。
尽量避免使用TEXT/BLOB类型,查询时会使用临时表,导致严重的性能开销。4、枚举类型(ENUM),把不重复的数据存储为一个预定义的集合。
有时可以使用ENUM代替常用的字符串类型。
ENUM存储非常紧凑,会把列表值压缩到一个或两个字节。
ENUM在内部存储时,其实存的是整数。
尽量避免使用数字作为ENUM枚举的常量,因为容易混乱。
排序是按照内部存储的整数5、日期和时间类型,尽量使用timestamp,空间效率高于datetime,
用整数保存时间戳通常不方便处理。
如果需要存储微妙,可以使用bigint存储。
看到这里,这道真题是不是就比较容易回答了。
varchar(50)中50的涵义
最多存放50个字符,varchar(50)和(200)存储hello所占空间一样,但后者在排序时会消耗更多内存,因为order by col采用fixed\_length计算col长度(memory引擎也一样)。在早期 MySQL 版本中, 50 代表字节数,现在代表字符数。
varchar 和 char 的区别
- CHAR 是定长的,根据定义的字符串长度分配足够的空间。CHAR 存储的内容超出设置的长度时,内容会被截断。
- VARCHAR 用于存储可变长字符串,它比定长类型更节省空间。VARCHAR 存储的内容超出设置的长度时,内容同样会被截断。
- 对于经常变更的数据来说,CHAR 比 VARCHAR 更好,因为 CHAR 不容易产生碎片。
- 对于非常短的列,CHAR 比 VARCHAR 在存储空间上更有效率。
int(20)中20的涵义
是指显示字符的长度。20表示最大显示宽度为20,但仍占4字节存储,存储范围不变;
不影响内部存储,只是影响带 zerofill 定义的 int 时,前面补多少个 0,易于报表展示
mysql为什么这么设计
对大多数应用没有意义,只是规定一些工具用来显示字符的个数;int(1)和int(20)存储和计算均一样;
mysql中int(10)和char(10)以及varchar(10)的区别
int(10)的10表示显示的数据的长度,不是存储数据的大小;chart(10)和varchar(10)的10表示存储数据的大小,即表示存储多少个字符。
int(10) 10位的数据长度 9999999999,占32个字节,int型4位
char(10) 10位固定字符串,不足补空格 最多10个字符
varchar(10) 10位可变字符串,不足补空格 最多10个字符char(10)表示存储定长的10个字符,不足10个就用空格补齐,占用更多的存储空间
varchar(10)表示存储10个变长的字符,存储多少个就是多少个,空格也按一个字符存储,这一点是和char(10)的空格不同的,char(10)的空格表示占位不算一个字符
FLOAT和DOUBLE的区别是什么?
- FLOAT类型数据可以存储至多8位十进制数,并在内存中占4字节。
- DOUBLE类型数据可以存储至多18位十进制数,并在内存中占8字节。
drop、delete与truncate的区别
三者都表示删除,但是三者有一些差别:

SQL 的生命周期?
- 应用服务器与数据库服务器建立一个连接
- 数据库进程拿到请求sql
- 解析并生成执行计划,执行
- 读取数据到内存并进行逻辑处理
- 通过步骤一的连接,发送结果到客户端
- 关掉连接,释放资源
在数据库中查询语句速度很慢,如何优化
(1)建索引
(2)减少表之间的关联
(3)优化 SQL,尽量让 SQL 很快定位数据,不要让 SQL 做全表查询,应该走索引,把数据量大的表排在前面
(4)简化查询字段,没用的字段不要,已经对返回结果的控制,尽量返回少量数据
(5)尽量用 Prepared Statement 来查询,不要用 Statement
超大分页怎么处理?
超大的分页一般从两个方向上来解决.
- 数据库层面,这也是我们主要集中关注的(虽然收效没那么大),类似于select from table where age > 20 limit 1000000,10这种查询其实也是有可以优化的余地的. 这条语句需要load1000000数据然后基本上全部丢弃,只取10条当然比较慢. 当时我们可以修改为select from table where id in (select id from table where age > 20 limit 1000000,10).这样虽然也load了一百万的数据,但是由于索引覆盖,要查询的所有字段都在索引中,所以速度会很快. 同时如果ID连续的好,我们还可以select * from table where id > 1000000 limit 10,效率也是不错的,优化的可能性有许多种,但是核心思想都一样,就是减少load的数据.
- 从需求的角度减少这种请求…主要是不做类似的需求(直接跳转到几百万页之后的具体某一页.只允许逐页查看或者按照给定的路线走,这样可预测,可缓存)以及防止ID泄漏且连续被人恶意攻击.
Union 和 Union All 有什么不同
UNION 在进行表链接后会筛选掉重复的记录,所以在表链接后会对所产生的结果集进行排序运算,删除重复的记录再返回结果。实际大部分应用中是不会产生重复的记录,最常见的是过程表与历史表 UNION。 UNION ALL 只是简单的将两个结果合并后就返回。这样,如果返回的两个结果集中有重复的数据,那么返回的结果集就会包含重复的数据了。 从效率上说,UNION ALL 要比 UNION 快很多,所以,如果可以确认合并的两个结果集中不包含重复的数据的话,那么就使用 UNION ALL。
order by 和 group by 的区别
order by 排序查询、asc 升序、desc 降序 group by 分组查询、having 只能用于 group by 子句、作用于组内,having 条件子句可以直接跟函数表达式。使用 group by 子句的查询语句需要使用聚合函数。
什么是 PL / SQL
PL / SQL 是一种程序语言,叫做过程化 SQL 语言(Procedural Language/SQL)。PL / SQL 是 Oracle 数据库对 SQL 语句的扩展。在普通 SQL 语句的使用上增加了编程语言的特点,所以 PL / SQL 把数据操作和查询语句组织在 PL / SQL 代码的过程性单元中,通过逻辑判断、循环等操作实现复杂的功能或者计算。PL / SQL 只有 Oracle 数据库有。 MySQL 目前不支持 PL / SQL 的。
引擎
MySQL存储引擎MyISAM与InnoDB区别
存储引擎Storage engine:MySQL中的数据、索引以及其他对象是如何存储的,是一套文件系统的实现。
常用的存储引擎有以下:
Innodb引擎:Innodb引擎提供了对数据库ACID事务的支持。并且还提供了行级锁和外键的约束。它的设计的目标就是处理大数据容量的数据库系统。
MyIASM引擎(原本Mysql的默认引擎):不提供事务的支持,也不支持行级锁和外键。
MEMORY引擎:所有的数据都在内存中,数据的处理速度快,但是安全性不高。
MyISAM与InnoDB区别

MyISAM索引与InnoDB索引的区别?
InnoDB索引是聚簇索引,MyISAM索引是非聚簇索引。
InnoDB的主键索引的叶子节点存储着行数据,因此主键索引非常高效。
MyISAM索引的叶子节点存储的是行数据地址,需要再寻址一次才能得到数据。
InnoDB非主键索引的叶子节点存储的是主键和其他带索引的列数据,因此查询时做到覆盖索引会非常高效。
InnoDB引擎的4大特性
- 插入缓冲(insert buffer)
- 二次写(double write)
- 自适应哈希索引(ahi)
- 预读(read ahead)
存储引擎选择
如果没有特别的需求,使用默认的
Innodb
即可。MyISAM:以读写插入为主的应用程序,比如博客系统、新闻门户网站。
Innodb:更新(删除)操作频率也高,或者要保证数据的完整性;并发量高,支持事务和外键。比如OA自动化办公系统。
索引
什么是索引
- 索引是一种特殊的文件(InnoDB 数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针。
- 索引是一种数据结构。数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用 B 树及其变种 B + 树。
- 更通俗的说,索引就相当于目录。为了方便查找书中的内容,通过对内容建立索引形成目录。索引是一个文件,它是要占据物理空间的。
索引的作用
索引就一种特殊的查询表,数据库的搜索可以利用它加速对数据的检索。它很类似与现实生活中书的目录,不需要查询整本书内容就可以找到想要的数据。
添加索引目的 ⭐
提高数据查询的效率
什么是聚集索引或非聚集索引 ⭐
物理存储顺序与逻辑顺序相同,即聚集索引
物理存储顺序与索引顺序不一致,即非聚集索引
索引有哪些优缺点
索引的优点
- 可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
- 通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
索引的缺点
- 时间方面:创建索引和维护索引要耗费时间,具体地,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,会降低增/改/删的执行效率;
- 空间方面:索引需要占物理空间。
什么样的字段适合建索引
唯一、不为空、经常被查询的字段
索引类型有哪些
主键索引: 数据列不允许重复,不允许为NULL,一个表只能有一个主键。
唯一索引: 数据列不允许重复,允许为NULL值,一个表允许多个列创建唯一索引。
- 可以通过 ALTER TABLE table\_name ADD UNIQUE (column); 创建唯一索引
- 可以通过 ALTER TABLE table\_name ADD UNIQUE (column1,column2); 创建唯一组合索引
普通索引: 基本的索引类型,没有唯一性的限制,允许为NULL值。
- 可以通过ALTER TABLE table\_name ADD INDEX index\_name (column);创建普通索引
- 可以通过ALTER TABLE table\_name ADD INDEX index\_name(column1, column2, column3);创建组合索引
全文索引: 是目前搜索引擎使用的一种关键技术。
- 可以通过ALTER TABLE table\_name ADD FULLTEXT (column);创建全文索引
索引的数据结构(b树,hash)
索引的数据结构和具体存储引擎的实现有关,在MySQL中使用较多的索引有Hash索引,B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。
1)B树索引
mysql通过存储引擎取数据,基本上90%的人用的就是InnoDB了,按照实现方式分,InnoDB的索引类型目前只有两种:BTREE(B树)索引和HASH索引。B树索引是Mysql数据库中使用最频繁的索引类型,基本所有存储引擎都支持BTree索引。通常我们说的索引不出意外指的就是(B树)索引(实际是用B+树实现的,因为在查看表索引时,mysql一律打印BTREE,所以简称为B树索引)
查询方式:
主键索引区:PI(关联保存的时数据的地址)按主键查询,
普通索引区:si(关联的id的地址,然后再到达上面的地址)。所以按主键查询,速度最快
B+tree性质:
1.)n棵子tree的节点包含n个关键字,不用来保存数据而是保存数据的索引。
2.)所有的叶子结点中包含了全部关键字的信息,及指向含这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
3.)所有的非终端结点可以看成是索引部分,结点中仅含其子树中的最大(或最小)关键字。
4.)B+ 树中,数据对象的插入和删除仅在叶节点上进行。
5.)B+树有2个头指针,一个是树的根节点,一个是最小关键码的叶节点。
2)哈希索引
简要说下,类似于数据结构中简单实现的HASH表(散列表)一样,当我们在mysql中用哈希索引时,主要就是通过Hash算法(常见的Hash算法有直接定址法、平方取中法、折叠法、除数取余法、随机数法),将数据库字段数据转换成定长的Hash值,与这条数据的行指针一并存入Hash表的对应位置;如果发生Hash碰撞(两个不同关键字的Hash值相同),则在对应Hash键下以链表形式存储。当然这只是简略模拟图。 >
使用B树的好处
B树可以在内部节点同时存储键和值,因此,把频繁访问的数据放在靠近根节点的地方将会大大提高热点数据的查询效率。这种特性使得B树在特定数据重复多次查询的场景中更加高效。
使用B+树的好处
由于B+树的内部节点只存放键,不存放值,因此,一次读取,可以在内存页中获取更多的键,有利于更快地缩小查找范围。 B+树的叶节点由一条链相连,因此,当需要进行一次全数据遍历的时候,B+树只需要使用O(logN)时间找到最小的一个节点,然后通过链进行O(N)的顺序遍历即可。而B树则需要对树的每一层进行遍历,这会需要更多的内存置换次数,因此也就需要花费更多的时间
Hash索引和B+树所有有什么区别或者说优劣呢?
首先要知道Hash索引和B+树索引的底层实现原理:
hash索引底层就是hash表,进行查找时,调用一次hash函数就可以获取到相应的键值,之后进行回表查询获得实际数据。B+树底层实现是多路平衡查找树。对于每一次的查询都是从根节点出发,查找到叶子节点方可以获得所查键值,然后根据查询判断是否需要回表查询数据。
那么可以看出他们有以下的不同:
hash索引进行等值查询更快(一般情况下),但是却无法进行范围查询。
因为在hash索引中经过hash函数建立索引之后,索引的顺序与原顺序无法保持一致,不能支持范围查询。而B+树的的所有节点皆遵循(左节点小于父节点,右节点大于父节点,多叉树也类似),天然支持范围。
hash索引不支持使用索引进行排序,原理同上。
hash索引不支持模糊查询以及多列索引的最左前缀匹配。原理也是因为hash函数的不可预测。AAAA和AAAAB的索引没有相关性。
hash索引任何时候都避免不了回表查询数据,而B+树在符合某些条件(聚簇索引,覆盖索引等)的时候可以只通过索引完成查询。
hash索引虽然在等值查询上较快,但是不稳定。性能不可预测,当某个键值存在大量重复的时候,发生hash碰撞,此时效率可能极差。而B+树的查询效率比较稳定,对于所有的查询都是从根节点到叶子节点,且树的高度较低。
因此,在大多数情况下,直接选择B+树索引可以获得稳定且较好的查询速度。而不需要使用hash索引。
数据库为什么使用B+树而不是B树
B树只适合随机检索,而B+树同时支持随机检索和顺序检索;
B+树空间利用率更高,可减少I/O次数,磁盘读写代价更低。一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗。B+树的内部结点并没有指向关键字具体信息的指针,只是作为索引使用,其内部结点比B树小,盘块能容纳的结点中关键字数量更多,一次性读入内存中可以查找的关键字也就越多,相对的,IO读写次数也就降低了。而IO读写次数是影响索引检索效率的最大因素;
B+树的查询效率更加稳定。B树搜索有可能会在非叶子结点结束,越靠近根节点的记录查找时间越短,只要找到关键字即可确定记录的存在,其性能等价于在关键字全集内做一次二分查找。而在B+树中,顺序检索比较明显,随机检索时,任何关键字的查找都必须走一条从根节点到叶节点的路,所有关键字的查找路径长度相同,导致每一个关键字的查询效率相当。
B-树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。B+树的叶子节点使用指针顺序连接在一起,只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作。
增删文件(节点)时,效率更高。因为B+树的叶子节点包含所有关键字,并以有序的链表结构存储,这样可很好提高增删效率。
B+树在满足聚簇索引和覆盖索引的时候不需要回表查询数据,
在B+树的索引中,叶子节点可能存储了当前的key值,也可能存储了当前的key值以及整行的数据,这就是聚簇索引和非聚簇索引。 在InnoDB中,只有主键索引是聚簇索引,如果没有主键,则挑选一个唯一键建立聚簇索引。如果没有唯一键,则隐式的生成一个键来建立聚簇索引。
当查询使用聚簇索引时,在对应的叶子节点,可以获取到整行数据,因此不用再次进行回表查询。
什么是聚簇索引?何时使用聚簇索引与非聚簇索引
聚簇索引:将数据存储与索引放到了一块,找到索引也就找到了数据
非聚簇索引:将数据存储于索引分开结构,索引结构的叶子节点指向了数据的对应行,myisam通过key\_buffer把索引先缓存到内存中,当需要访问数据时(通过索引访问数据),在内存中直接搜索索引,然后通过索引找到磁盘相应数据,这也就是为什么索引不在key buffer命中时,速度慢的原因
非聚簇索引一定会回表查询吗?
不一定,这涉及到查询语句所要求的字段是否全部命中了索引,如果全部命中了索引,那么就不必再进行回表查询。
举个简单的例子,假设我们在员工表的年龄上建立了索引,那么当进行select age from employee where age < 20的查询时,在索引的叶子节点上,已经包含了age信息,不会再次进行回表查询。
联合索引是什么?为什么需要注意联合索引中的顺序?
MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。
具体原因为:
MySQL使用索引时需要索引有序,假设现在建立了
当进行查询时,此时索引仅仅按照name严格有序,因此必须首先使用name字段进行等值查询,之后对于匹配到的列而言,其按照age字段严格有序,此时可以使用age字段用做索引查找,以此类推。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。
事务
什么是事务
事务是一个不可分割的数据库操作序列,也是数据库并发控制的基本单位,其执行的结果必须使数据库从一种一致性状态变到另一种一致性状态。事务是指一个单元的工作,要么全做,要么全不做,事务是逻辑上的一组操作,保证一组数据的修改要么全部执行,要么全部不执行。
举例:事务最经典也经常被拿出来说例子就是转账了。
假如小明要给小红转账 1000 元,这个转账会涉及到两个关键操作就是:将小明的余额减少 1000 元,将小红的余额增加 1000 元。万一在这两个操作之间突然出现错误比如银行系统崩溃,导致小明余额减少而小红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。
事物的四大特性(ACID)介绍一下?
关系性数据库需要遵循ACID规则,具体内容如下:

- 原子性: 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
- 一致性: 执行事务前后,数据保持一致,多个事务对同一个数据读取的结果是相同的;
- 隔离性: 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
- 持久性: 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。
什么是脏读?幻读?不可重复读?
- 脏读(Drity Read):某个事务已更新一份数据,另一个事务在此时读取了同一份数据,由于某些原因,前一个RollBack了操作,则后一个事务所读取的数据就会是不正确的。
- 不可重复读(Non-repeatable read):在一个事务的两次查询之中数据不一致,这可能是两次查询过程中间插入了一个事务更新的原有的数据。
- 幻读(Phantom Read):在一个事务的两次查询中数据笔数不一致,例如有一个事务查询了几列(Row)数据,而另一个事务却在此时插入了新的几列数据,先前的事务在接下来的查询中,就会发现有几列数据是它先前所没有的。
什么是事务的隔离级别?MySQL的默认隔离级别是什么?
为了达到事务的四大特性,数据库定义了4种不同的事务隔离级别,由低到高依次为Read uncommitted、Read committed、Repeatable read、Serializable,这四个级别可以逐个解决脏读、不可重复读、幻读这几类问题。
SQL 标准定义了四个隔离级别:
READ-UNCOMMITTED(读取未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
READ-COMMITTED(读取已提交): 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。
REPEATABLE-READ(可重复读): 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。
SERIALIZABLE(可串行化): 最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。
事务的隔离级别有哪些
事务隔离级别包括: 原子性,即不可分割性,事务要么全部被执行,要么就全部不被执行; 一致性或可串性,事务的执行使得数据库从一种正确状态转换成另一种正确状态; 隔离性,在事务正确提交之前,不允许把该事务对数据的任何改变提供给任何其他事务; 持久性,事务正确提交后,其结果将永久保存在数据库中,即使在事务提交后有了其他故障,事务的处理结果也会得到保存。
锁
什么是锁
在所有的 DBMS 中,锁是实现事务的关键,锁可以保证事务的完整性和并发性。与现实生活中锁一样,它可以是某些数据的拥有者,在某段时间内不能使用某些数据或数据结构。当然锁还分级别的。
隔离级别与锁的关系
在Read Uncommitted级别下,读取数据不需要加共享锁,这样就不会跟被修改的数据上的排他锁冲突
在Read Committed级别下,读操作需要加共享锁,但是在语句执行完以后释放共享锁;
在Repeatable Read级别下,读操作需要加共享锁,但是在事务提交之前并不释放共享锁,也就是必须等待事务执行完毕以后才释放共享锁。
SERIALIZABLE 是限制性最强的隔离级别,因为该级别锁定整个范围的键,并一直持有锁,直到事务完成。
按照锁的粒度分数据库锁有哪些?锁机制与InnoDB锁算法
在关系型数据库中,可以按照锁的粒度把数据库锁分为行级锁(INNODB引擎)、表级锁(MYISAM引擎)和页级锁(BDB引擎 )。
MyISAM和InnoDB存储引擎使用的锁:
MyISAM采用表级锁(table-level locking)。
InnoDB支持行级锁(row-level locking)和表级锁,默认为行级锁
行级锁,表级锁和页级锁对比
行级锁 行级锁是Mysql中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大。行级锁分为共享锁 和 排他锁。
特点:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
表级锁 表级锁是MySQL中锁定粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分MySQL引擎支持。最常使用的MYISAM与INNODB都支持表级锁定。表级锁定分为表共享读锁(共享锁)与表独占写锁(排他锁)。
特点:开销小,加锁快;不会出现死锁;锁定粒度大,发出锁冲突的概率最高,并发度最低。
页级锁 页级锁是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。
特点:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般
从锁的类别上分MySQL都有哪些锁呢?像上面那样子进行锁定岂不是有点阻碍并发效率了
从锁的类别上来讲,有共享锁和排他锁。
共享锁: 又叫做读锁。 当用户要进行数据的读取时,对数据加上共享锁。共享锁可以同时加上多个。
排他锁: 又叫做写锁。 当用户要进行数据的写入时,对数据加上排他锁。排他锁只可以加一个,他和其他的排他锁,共享锁都相斥。
用上面的例子来说就是用户的行为有两种,一种是来看房,多个用户一起看房是可以接受的。 一种是真正的入住一晚,在这期间,无论是想入住的还是想看房的都不可以。
锁的粒度取决于具体的存储引擎,InnoDB实现了行级锁,页级锁,表级锁。
他们的加锁开销从大到小,并发能力也是从大到小。
MySQL中InnoDB引擎的行锁是怎么实现的?
答:InnoDB是基于索引来完成行锁
例: select * from tab\_with\_index where id = 1 for update;
for update 可以根据条件来完成行锁锁定,并且 id 是有索引键的列,如果 id 不是索引键那么InnoDB将完成表锁,并发将无从谈起
InnoDB存储引擎的锁的算法有三种
- Record lock:单个行记录上的锁
- Gap lock:间隙锁,锁定一个范围,不包括记录本身
- Next-key lock:record+gap 锁定一个范围,包含记录本身
相关知识点:
innodb对于行的查询使用next-key lock
Next-locking keying为了解决Phantom Problem幻读问题
当查询的索引含有唯一属性时,将next-key lock降级为record key
Gap锁设计的目的是为了阻止多个事务将记录插入到同一范围内,而这会导致幻读问题的产生
有两种方式显式关闭gap锁:(除了外键约束和唯一性检查外,其余情况仅使用record lock) A. 将事务隔离级别设置为RC B. 将参数innodb\_locks\_unsafe\_for\_binlog设置为1
什么是死锁?怎么解决?
死锁是指两个或多个事务在同一资源上相互占用,并请求锁定对方的资源,从而导致恶性循环的现象。
常见的解决死锁的方法
1、如果不同程序会并发存取多个表,尽量约定以相同的顺序访问表,可以大大降低死锁机会。
2、在同一个事务中,尽可能做到一次锁定所需要的所有资源,减少死锁产生概率;
3、对于非常容易产生死锁的业务部分,可以尝试使用升级锁定颗粒度,通过表级锁定来减少死锁产生的概率;
如果业务处理不好可以用分布式事务锁或者使用乐观锁
数据库的乐观锁和悲观锁是什么?怎么实现的?
数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性。乐观并发控制(乐观锁)和悲观并发控制(悲观锁)是并发控制主要采用的技术手段。
悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。在查询完数据的时候就把事务锁起来,直到提交事务。实现方式:使用数据库中的锁机制
乐观锁:假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。在修改数据的时候把事务锁起来,通过version的方式来进行锁定。实现方式:乐一般会使用版本号机制或CAS算法实现。
两种锁的使用场景
从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。
但如果是多写的情况,一般会经常产生冲突,这就会导致上层应用会不断的进行retry,这样反倒是降低了性能,所以一般多写的场景下用悲观锁就比较合适。
视图
为什么要使用视图
为了提高复杂 SQL 语句的复用性和表操作的安全性,数据库管理系统提供了视图特性。视图使得开发者只关心感兴趣的某些特定数据和所负责的特定任务,只能看到视图中所定义的数据,而不是视图所引用表中的数据,从而提高了数据库中数据的安全性。
什么是视图
视图本质上是一种虚拟表,在物理上是不存在的,具有和物理表相同的功能,其内容与真实的表相似,包含一系列带有名称的列和行数据,可以对视图进行增,改,查,操作,但是,视图并不在数据库中以储存的数据值形式存在。行和列数据来自定义视图的查询所引用基本表,并且在具体引用视图时动态生成。
视图有哪些特点
视图的特点如下:
视图的列可以来自不同的表,是表的抽象和在逻辑意义上建立的新关系。
视图是由基本表(实表)产生的表(虚表)。
视图的建立和删除不影响基本表。
对视图内容的更新(添加,删除和修改)直接影响基本表。
当视图来自多个基本表时,不允许添加和删除数据。
视图的操作包括创建视图,查看视图,删除视图和修改视图。
视图的使用场景有哪些
视图根本用途:简化 SQL 查询,提高开发效率。如果说还有另外一个用途那就是兼容老的表结构。
下面是视图的常见使用场景:
重用 SQL 语句;
简化复杂的 SQL 操作。在编写查询后,可以方便的重用它而不必知道它的基本查询细节;
使用表的组成部分而不是整个表;
保护数据。可以给用户授予表的特定部分的访问权限而不是整个表的访问权限;
更改数据格式和表示。视图可返回与底层表的表示和格式不同的数据。
视图的优点
(1)查询简单化:视图能简化用户的操作
(2)数据安全性:视图使用户能以多种角度看待同一数据,能够对机密数据提供安全保护
(3)逻辑数据独立性:视图对重构数据库提供了一定程度的逻辑独立性
视图的缺点
(1)性能:数据库必须把视图的查询转化成对基本表的查询,如果这个视图是由一个复杂的多表查询所定义,那么,即使是视图的一个简单查询,数据库也把它变成一个复杂的结合体,需要花费一定的时间。
(2)修改限制:当用户试图修改视图的某些行时,数据库必须把它转化为对基本表的某些行的修改。事实上,当从视图中插入或者删除时,情况也是这样。对于简单视图来说,这是很方便的,但是,对于比较复杂的视图,可能是不可修改的
表和视图的关系
视图其实就是一条查询 SQL 语句,用于显示一个或多个表或其他视图中的相关数据。 表就是关系数据库中实际存储数据用的。
什么是游标
游标是系统为用户开设的一个数据缓冲区,存放 SQL 语句的执行结果,每个游标区都有一个名字。用户可以通过游标逐一获取记录并赋给主变量,交由主语言进一步处理。
存储过程与函数
什么是存储过程
存储过程是一个预编译的 SQL 语句,优点是允许模块化的设计,就是说只需要创建一次,以后在该程序中就可以调用多次。如果某次操作需要执行多次 SQL,使用存储过程比单纯 SQL 语句执行要快。
存储过程用什么来调用
- 可以用一个命令对象来调用存储过程。
- 可以供外部程序调用,比如:Java 程序。
存储过程的优缺点
优点
1)存储过程是预编译过的,执行效率高。
2)存储过程的代码直接存放于数据库中,通过存储过程名直接调用,减少网络通讯。
3)安全性高,执行存储过程需要有一定权限的用户。
4)存储过程可以重复使用,减少数据库开发人员的工作量。
缺点
1)调试麻烦,但是用 PL/SQL Developer 调试很方便!弥补这个缺点。
2)移植性差,数据库端代码当然是与数据库相关的。但是如果是做工程型项目,基本不存在移植问题。
3)重新编译问题,因为后端代码是运行前编译的,如果带有引用关系的对象发生改变时,受影响的存储过程、包将需要重新编译(不过也可以设置成运行时刻自动编译)。
4)如果在一个程序系统中大量的使用存储过程,到程序交付使用的时候随着用户需求的增加会导致数据结构的变化,接着就是系统的相关问题了,最后如果用户想维护该系统可以说是很难很难、而且代价是空前的,维护起来更麻烦。
存储过程与函数的区别
存储过程
函数
用于在数据库中完成特定的操作或者任务(如插入、删除等)
用于特定的数据(如选择)
程序头部声明用 procedure
程序头部声明用 function
程序头部声明时不需描述返回类型
程序头部声明时要描述返回类型,而且 PL / SQL 块中至少要包括一个有效的 return 语句
可以使用 in / out / in out 三种模式的参数
可以使用 in / out /in out 三种模式的参数
可作为一个独立的 PL / SQL 语句来执行
不能独立执行,必须作为表达式的一部分调用
可以通过 out / in out 返回零个或多个值
通过 return 语句返回一个值,且改值要与声明部分一致,也可以是通过 out 类型的参数带出的变量
SQL 语句( DML 或 SELECT )中不可调用存储过程
SQL 语句( DML 或 SELECT )中可以调用函数
触发器
什么是触发器
触发器是用户定义在关系表上的一类由事件驱动的特殊的存储过程,触发器是指一段代码,当触发某个事件时,自动执行这些代码。主要是通过事件来触发而被执行的。它可以强化约束,来维护数据的完整性和一致性,可以跟踪数据库内的操作从而不允许未经许可的更新和变化。可以联级运算。如某表上的触发器上包含对另一个表的数据操作,而该操作又会导致该表触发器被触发。
触发器的使用场景有哪些
可以通过数据库中的相关表实现级联更改。
实时监控某张表中的某个字段的更改而需要做出相应的处理。
例如可以生成某些业务的编号。
注意不要滥用,否则会造成数据库及应用程序的维护困难。
大家需要牢记以上基础知识点,重点是理解数据类型CHAR和VARCHAR的差异,表存储引擎InnoDB和MyISAM的区别。
MySQL中都有哪些触发器
在 MySQL 数据库中有如下六种触发器:
- Before Insert
- After Insert
- Before Update
- After Update
- Before Delete
- After Delete
事前触发和事后触发有什么区别
事前触发器运行于触发事件发生之前,而事后触发器运行于触发事件发生之后。通常事前触发器可以获取事件之前和新的字段值。
语句级触发和行级触发有何区别
语句级触发器可以在语句执行前或后执行,而行级触发在触发器所影响的每一行触发一次。